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Abstract

The representative volume element (RVE) plays a central role in the mechanics and physics of random heterogeneous
materials with a view to predicting their effective properties. A quantitative definition of its size is proposed in this work.
A RVE size can be associated with a given precision of the estimation of the wanted overall property and the number of
realizations of a given volume ¥ of microstructure that one is able to consider. It is shown to depend on the investigated
morphological or physical property, the contrast in the properties of the constituents, and their volume fractions. The
methodology is applied to a specific random microstructure, namely a two-phase three-dimensional Voronoi mosaic.
Finite element simulations of volumes of different sizes are performed in the case of linear elasticity and thermal
conductivity. The volumes are subjected to homogeneous strain, stress or periodic boundary conditions. The effective
properties can be determined for large volumes and a small number of realizations. Conversely, smaller volumes can be
used providing that a sufficient number of realizations are considered. A bias in the estimation of the effective properties
is observed for too small volumes for all types of boundary conditions. The variance of computed apparent properties
for each volume size is used to define the precision of the estimation. The key-notion of integral range is introduced to
relate this error estimation and the definition of the RVE size. For given wanted precision and number of realizations,
one is able to provide a minimal volume size for the computation of effective properties. The results can also be used to
predict the minimal number of realizations that must be considered for a given volume size in order to estimate the
effective property for a given precision. The RVE sizes found for elastic and thermal properties, but also for a geo-
metrical property like volume fraction, are compared.
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1. Introduction

One important goal of the mechanics and physics of heterogeneous materials is to derive their effec-
tive properties from the knowledge of the constitutive laws and spatial distribution of their components.
Homogenization methods have been designed for this purpose. They have reached a high level of sophis-
tication and efficiency, especially in the case of linear properties such as thermal conductivity or elasticity.
They can be found in reference extended papers and textbooks like Willis (1981), Sanchez-Palencia and
Zaoui (1987) and Nemat-Nasser and Hori (1993) or, more recently, Suquet (1997), Ponte Castaneda and
Suquet (1987), Bornert et al. (2001), Besson et al. (2001) and Jeulin and Ostoja-Starzewski (2001), where
extensions to nonlinear properties are also proposed.

On the one hand, rigorous bounds for the macroscopic linear properties of composites are available.
They include the well-known Voigt and Reuss bounds that take only the volume fraction of the compo-
nents into account. Hashin and Shtrikman’s bounds incorporate the notion of isotropic distribution of
phases (Hashin and Shtrikman, 1963). Third order bounds, in the case of random media, were obtained in
the general case by Beran (1968), and later for two-phase materials by Miller (1969) and Milton (1982). The
incorporation of more and more statistical information on the distribution of heterogeneities in random
materials leads to a hierarchy of bounds, as suggested by the systematic theory of Kroner (1980), and also
in Torquato and Stell (1983), Torquato and Lado (1986) and Torquato (1991). Note that some of these
bounds are optimal in the sense that specific morphologies can be designed that give exactly the value of the
bound as effective property.

On the other hand, direct estimations of the wanted effective properties can be proposed. The Mori-
Tanaka model for instance favours one phase as a matrix. In contrast, the self-consistent (SC) scheme,
presented by Beran (1968) for thermal conductivity and by Hershey (1954) and Kroner (1958) for linear
polycrystals, refers to a disordered distribution of phases. A geometrical construction given by Milton
(1985) for two-phase composites is obtained by a multiscale stacking of spheres of every phase with the
appropriate volume fractions; for this disordered morphology, and for the estimations of the SC model, the
role of every component is symmetric.

In all these theories, the proposed estimations are given for random composite media with an infinite
extension, and can therefore be denoted as asymptotic estimates. A different way to solve homogenization
problems is to use numerical techniques and simulations on samples of the microstructure. In that case, the
notion of representative volume element (RVE) is of paramount importance. The RVE is usually regarded
as a volume V of heterogeneous material that is sufficiently large to be statistically representative of the
composite, i.e., to effectively include a sampling of all microstructural heterogeneities that occur in the
composite. This is generally the principle adopted, and it leads to the fact that the RVE must include a large
number of the composite microheterogeneities (grains, inclusions, voids, fibers, etc.). It must however re-
main small enough to be considered as a volume eclement of continuum mechanics. Several types of
boundary conditions can be prescribed on V' to impose a given mean strain or mean stress to the material
element. As a matter of fact, the response of the RVE must be independent of the type of boundary
conditions, as proved by Sab (1992). This also pleads for a rather large size of RVE.

Another definition of the RVE was recently proposed by Drugan and Willis (1996): “It is the smallest
material volume element of the composite for which the usual spatially constant (overall modulus) macroscopic
constitutive representation is a sufficiently accurate model to represent mean constitutive response”. This
approach uses the solution of the homogenization for an infinite medium, and does not consider statistical
fluctuations of the effective properties over finite domains. In contrast to the large RVE sizes expected from
the previous definitions, the estimates of RVE size found by Drugan and Willis (1996) turn out to be much
smaller (a small number of fibers for disordered fiber composite for instance).

Numerical techniques can help determining a critical size of volume 7 and choosing among the previous
conflicting definitions. Monte-Carlo simulations were used by Gusev (1997) to generate independent
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realizations of disordered distributions of spheres in a matrix. A few dozen of spheres were necessary to
obtain small scatter in the averaged property. In Forest et al. (2000), the stress—strain curves of poly-
crystalline wires in torsion were simulated as a function of the number of grains within the cross-section:
about 30 grains in the cross-section were necessary to reach stationary responses. Other examples of
convergence of overall properties as the unit cell size is increased can be found in Povirk (1994) and Terada
et al. (1998). In Zeman and Sejnoha (2001), the numerical simulations are combined with the use of sta-
tistical information like the two-point probability. In Roberts and Garboczi (2000), the finite element
method is used to estimate the elastic properties for various models of porous ceramics. Statistical fluc-
tuation is briefly investigated but not related to estimations of RVE sizes. Examples of microstructural
dependence of Young’s modulus and Poisson’s ratio, computed via the finite element method, can be found
in Roberts and Garboczi (2001) and Meille and Garboczi (2001).

For microstructures with a high contrast of properties, the bounds are too far apart to give a useful
estimate of the effective properties. On the other hand, estimates like the SC model can give a fair prediction
but correspond to a very specific morphology of the components. For these reasons, we have to use a
numerical method. In the present work, computational homogenization methods are used to determine the
effective properties of heterogeneous materials.

In some experiments but also in many simulations, large size volumes ¥ cannot be handled, so that one
has to work with apparent moduli obtained on volumes smaller than the RVE. This situation has been
extensively studied by Huet (1990) and Hazanov and Huet (1994). Bounding relations between apparent
and effective properties are derived for several types of strain, stress or mixed boundary conditions.

The aim of the present work is to propose and illustrate a more quantitative definition of the RVE, which
is based on statistical arguments: the RVE must ensure a given accuracy of the estimated property obtained
by spatial averaging of the stress, the strain, or the energy fields in a given domain V. Alternatively, the use
of smaller volumes V' must be compensated by averaging over several realizations of the microstructure to
get the same accuracy, provided no bias is introduced in the estimation by some edge effects generated by
the boundary conditions. It will appear that the overall moduli obtained by averaging over small domains
of composite material, using a sufficient number of realizations for each of the studied boundary condi-
tions, is not the same, in general, as that obtained by a sufficiently large RVE. Note that, in general, the size
of a RVE depends on the investigated morphological or physical property. For the same microstructure, it
will be shown that the RVE size differs if thermal or elastic properties are considered. It makes sense also to
define the notion of RVE for a morphological property like volume fraction. Again, it will appear that the
corresponding size is different from that found for a physical property. The key-notion that will be used for
a precise definition of the RVE is the integral range classically used in mathematical morphology and
recalled in Section 3.2. The notion of integral range has already been used for the homogenization, by
simulations, of the elastic properties of 2D random composites, but without explicit reference to the notion
of RVE (Cailletaud et al., 1994).

The example of microstructure chosen in this work to illustrate the methodology of determination of
RVE is a three-dimensional two-phase Voronoi mosaics. Three-dimensional Voronoi cells are simple
representations of grains in a polycrystal and have been used in the past to study the elastoplastic behaviour
of polycrystals in Forest et al. (2000), Barbe et al. (2001a) and Barbe et al. (2001b). Here only two phases
are considered with a high contrast of properties to enhance the variability of apparent properties on small
volumes. Because of the high value of contrast in properties, large volume sizes  must be investigated. The
numerical simulations are performed using the finite element method. This means that it will be necessary to
use gigantic meshes with a huge amount of degrees of freedom. The resolution is possible only by means of
parallel computing.

The representativity of the measurements obtained from limited domains of the random two-phase
heterogeneous material, is investigated. These measurements of the specimen concern the morphology
(volume fraction), and the following effective physical properties: elastic moduli and thermal conductivity.
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The variances of the apparent volume fraction, elastic moduli and thermal conductivity are obtained in
windows of increasing sizes. In the paper, the hard phase (respectively highly conductive) is labelled 1, with
volume fraction P;. The soft one (respectively less conductive) is called 2, with volume fraction P».

The paper is organized as follows. Section 2 recalls the main definitions, boundary conditions and no-
tations of the whole paper for the determination of effective elastic and thermal properties. A brief sta-
tistical description of heterogeneous materials is provided in Section 3 focusing on covariance and integral
range. The case of Voronoi mosaics is introduced in Section 3.3. The numerical tools necessary for the
Monte-Carlo simulations follow in Section 4 with special attention to the meshing of Voronoi polyhedra,
mesh size and parallel computing techniques. The effective properties for this type of microstructure are
obtained in Section 5 for volume fraction, elasticity and thermal conductivity. The stress is led on the study
of dispersion (variance) as a function of volume size and on the determination of corresponding integral
ranges. A quantitative definition of RVE size based on the notion of integral range is introduced in Section
6. The different RVE sizes found for the different properties are compared. Their dependence on volume
fraction and contrast of properties is also addressed.

2. Effective linear properties

The elements and notations of homogenization theory necessary for the numerical determination of
effective properties carried out in Section 5 are presented below for linear elasticity and for thermal con-
ductivity. Special attention is focused on boundary conditions to be prescribed on volume elements and to
the definition of effective and apparent properties. More details and the proofs of the given results can be
found in the textbooks and reference articles mentioned at the beginning of the introduction.

2.1. Linear elasticity

A volume element ' made of heterogeneous material is considered. Conditions are prescribed at its
boundary 0V in order to estimate its overall properties.

2.1.1. Boundary conditions
In this work, three types of boundary conditions to be prescribed on individual volume element V' are
considered:

¢ Kinematic uniform boundary conditions (KUBC): The displacement u is imposed at point x belonging to
the boundary 0V such that:

u=E-x Vxedv (1)
E is a symmetrical second-rank tensor that does not depend on x. This implies that:
1
<5>£—/st:E (2)

The sign = means a definition of the left quantity. The macroscopic stress tensor is then defined by the
spatial average:

r2te) = [ aav )

e Static uniform boundary conditions (SUBC): The traction vector is prescribed at the boundary:
c-on=2X-n YxedV 4)
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2 is a symmetrical second-rank tensor independent of x. The vector normal to 0/ at x is denoted by n.
This implies that:

=y [aar=2 5
The macroscopic strain tensor is then defined as the spatial average:
E=(g) = % /Vst ©)
e Periodicity conditions (PERIODIC): The displacement field over the entire volume V' takes the form
u=E-x+v VxeV (7

where the fluctuation v is periodic. It takes the same values at two homologous points on opposite faces
of V. The traction vector ¢ - n takes opposite values at two homologous points on opposite faces of V.

When the constitutive behaviour of the components is described by linear elasticity, each microme-
chanical problem (KUBC, SUBC and PERIODIC) admits a single solution, up to a rigid body motion for
problem SUBC and a translation for PERIODIC. Accordingly, there exists a four-rank concentration
tensor field 4 such that:

e(x) =A(x):E VxeV and VE (8)

for the KUBC problem, and a four-rank concentration tensor field B such that:

o(x)=B(x): 2 VxeV and VX 9)

for the SUBC problem. From Egs. (3) and (6), the concentration tensors satisfy:
(d)=(B) =1 (10)

[ is the fourth-rank identity tensor operating on symmetric second-rank tensors.

2.1.2. Apparent and effective moduli
Let ¢(x) and s(x) be the four-rank tensor fields of elastic moduli and compliances in the volume V" of
heterogeneous material:

g(x) =cx):e(x), &lx)=s(x):0x) VxeV (11)

For the KUBC problem, one has then:
2={(g)=(c:4:E)=(c:4):E=CE (12)

~ ~

and for the SUBC problem:
E=(g)=(s:B:2)=(s:B):2=5":2 (13)

~ o~ ~ = ~

which defines unambiguously apparent moduli Cj** and apparent compliances S5 for a given volume V.

The relations show that the apparent properties are not given in general by a simple law of mixtures, but
involve a more complex averaging process.
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A definition of apparent moduli based on strain energy e is also possible:
e£<g:§>:<§:£:c>:E:<,;1T:g:é1>:lj (14)

for the KUBC problem, and:
e:<g:§>:<g:£:g>:§:(§T:§:lj>:§ (15)

for the SUBC problem. The exponent ‘T’ denotes transposition. This leads to the following definition of
apparent moduli:
gzpp = <1;1T ic : A), g}pp =(B": s

s~

) (16)

The symmetry of the apparent moduli is clearer in these formula. However the application of so-called Hill-
Mandel lemma shows that both definitions are in fact equivalent (Sanchez-Palencia and Zaoui, 1987).

For sufficiently large volumes ¥, the apparent moduli do not depend any more on the type of boundary
conditions and coincide with the wanted effective properties of the medium (Sab, 1992):

g;l;"pp — ggpp-l _ geff — Ageff—l (17)

For intermediate volumes V', one simply has the following bounding inequations (Huet, 1990):

g;pp-l < gff < g%pp (18)

The inequalities must be understood in the sense of quadratic forms. In the computations presented in
Section 5.1.2, it will be checked that these relations hold. The periodic estimation for a given volume ¥ also
lies between S%*! and C%P.

2.1.3. Elementary problems on V for isotropic effective properties

Specific boundary value problems are defined in this subsection that will be used for the determination of
isotropic effective elastic properties in Section 5.1.2. These are special cases of the previous KUBC, SUBC
and PERIODIC conditions, for which specific values of £ and X are chosen.

In the case of KUBC and PERIODIC conditions prescribed to a given volume V', one takes

100 01 0
Ek = 0 % 0 ) Eu = % 0 0 (19)
0 0 1 0 00
An “apparent bulk modulus™ £*"P and an “apparent shear modulus” p*"P can be defined as:
K™ 2e(E,) = (g) : E, = \trace (g) (20)
p=e(E,) = () : E, = (o12) (21)

In the case of SUBC boundary conditions, one takes:

1 00 010
=(010], =z=[100 (22)
00 1 000

In this case an “apparent bulk modulus’ £°P? and an ““apparent shear modulus™ p*PP can also be defined as:

F (%) = 34t {g) = trace() (23)
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ﬁﬁe(gu) =2, : () = 2{en) (24)

The physical meaning of these quantities is actually that of bulk and shear moduli only when the response
of volume ¥ is isotropic, which is generally not the case. The problem of the determination of isotropic
apparent moduli from simulations on small volumes is discussed in Section 5.1.2.

2.2. Thermal conductivity

For the thermal problem, the temperature, its gradient and the heat flux vector are denoted by 7, VT and
g respectively. The heat flux vector and the temperature gradient are related by Fourier’s law, that reads:

q=ivT (25)

in the isotropic case. The scalar A is the thermal conductivity coefficient of the considered phase.
A volume V of heterogeneous material is considered again. Three types of boundary conditions are used
in the study of the effective thermal conductivity:

e Uniform gradient of temperature at the boundary (UGT):

T=G-x VxeoV (26)
G is a constant vector independent of x. This implies that:
<VT>:1/VTdV:Q (27)
V- Jy
The macroscopic flux vector is defined by the spatial average:
. 1
2=l =y /de (28)
4
e Uniform heat flux at the boundary (UHF):
g-n=0-x VxedV (29)
Q is a constant vector independent of x. This implies that:
1
(@)= /de =0 (30)
4

The macroscopic temperature gradient is given by the spatial average:
1
G=(VT) :—/VTdV (31)
V- Jy
¢ Periodic boundary conditions (PERIODIC): the temperature field takes the form
T=G-x+t YxeV (32)

The fluctuation temperature ¢ is periodic.

Concentration tensors 4 and B exist such that:
VI(x)=4()-G, and ¢(x)=B(x)-Q (33)
for the problems UGT and UHF respectively. Apparent conductivity tensors can be defined as:

i = ) and 2= (38) (34)

Apparent conductivities coincide with the wanted effective properties for sufficiently large volumes V.
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In the case of isotropic effective properties, as considered in Section 5.1.3, the following test temperature
gradient and flux will be prescribed:

G,=(111)" and Q =(I111)" (35)

They are used respectively to define the following “apparent conductivities’:

app _

pi strace(q), 22! = Lrace(VT) (36)

3. Statistical description of random heterogeneous media

Models of random media may be useful at two different levels: to provide a description of the hetero-
geneous structure, and to predict some macroscopic properties of materials. In this part, basic morpho-
logical tools that are available to quantitatively characterize the geometry of random media are introduced.
They can be easily obtained from the analysis of images of the microstructure. They are illustrated in the
last subsection by an estimation of the integral range for a Voronoi mosaic model.

3.1. Reminder on the covariance of a random set

To describe the geometrical dispersion, the state of two points x; and x, with the separation /4 can be
tested, without considering what happens between the two points (Matheron, 1971; Jeulin, 1981; Serra,
1982; Coster and Chermant, 1989; Jeulin, 2001). The morphological approach based on the covariance is, in
general, suitable to study the dispersion.

The covariogram K (X, %) is the measure ‘Mes’ of the intersection of the set X (surface in 2D, volume in
3D) and of the translated set of X by —4, X ;. We have:

K(X,h) =Mes(XNX,) = /k(x)k(x+ h)dx (37)

k(x) is defined as:

1 ifxeX
k(x)_{O else

Properties of the covariogram
e For 7 =0, we have:

K(X,0) = Mes(X NX_y) = Mes(X) (38)
e For a bounded set X:
K(X,00)=0, K(X,h)=0forh>4 (39)

A is the largest distance between two points in X in the direction of 4.
e The integral of the covariogram is given by:

/ K(X,h)dh = (Mes(X))? (40)

The probabilistic version of the covariogram for a stationary set X is the covariance function, noted
C(X,h). The covariance function is the probability for the two points x and x + 4 to be in the set X:
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CX,h)=P{xeX,x+heX} (41)

If X is defined in R*:
C(X,0)=V(X)=P (42)

Vi, is the volume fraction of X in R*. One has also:

C(X,h)=CX,—h)<C(X,0) (43)
and:
lim C(X, ) = (4 (X))’ (44)

The covariance presents an asymptotic theoretical value equal to the square of the volume fraction of X.

If this limit is reached before 7 — oo, for example, for a value & = 4, the points of the structure with a
distance larger than A4 are not correlated (Matheron, 1971; Jeulin, 1981; Serra, 1982; Jeulin, 2001). This
distance is the range of the covariance. We can estimate the covariance from images (like plane sections)
inside a mask, by means of the geometrical covariogram (two examples are given in Fig. 1). The covariance
is characteristic of the size and of the arrangement of connected objects building the set X. In Fig. 1a the
range is close to 37 pm, while in Fig. 1b it is close to 19 pm, the range for the coarse microstructure being
larger than for the fine microstructure. In addition, from the measurement of the covariance in two or-
thogonal directions given in Fig. 1, it can be seen that the microstructure is isotropic.

3.2. Notion of integral range

It is possible to define a range which gives information on the domain size of the structure for which the
parameters measured in this volume have a good statistical representativity. This range is called the integral
range (Matheron, 1971, 1975, 1989; Lantuéjoul, 1991; Cailletaud et al., 1994; Jeulin, 2001). The definition
of the integral range in the space R” is:

1

4 0 - coop /n(C(X’h)—COCO) )dh s

This notion is very useful to predict the variability of properties of a material as a function of the geometry
of parts. For instance, the variance D3(¥;;) of the volume fraction ¥;; = Mes(X N V)/MesV of a sample

with volume ¥ in an infinite domain, for a microstructure with the covariance C(X, &) is given by Matheron
(1971):

D) =35 [ [(CCtx=n) - Pyaray (46)

For a large specimen (V' > 4,), D3(V) can be expressed as a function of the integral range in the space R",
A,, by:

P(1 — P)4,

Dp(V) ==—;

(47)
Therefore, the specimen ¥ is statistically equivalent to N ~ V' /4, uncorrelated samples. From the variance,
it is easy to work out the confidence interval of the average of the volume fraction P (P 4 2Dp(V)) as a
function of the volume ¥ and of the integral range. This gives the relative precision of the estimation.
Conversely, the volume ¥ to be used to get a given precision is obtained as a function of P and of 4,.
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Fig. 1. Microstructures (with the same volume fraction and different morphologies) and their covariances in horizontal and vertical
directions; the image size is 150 pmx 150 pm. The asymptotic value is equal to the square of the volume fraction (of the white phase);
for the fine (a) and coarse (b) microstructures (material from food industry, Colworth, 2000).

This is the reason for interpreting 4, as the scale of the phenomenon, ¥ being the scale of observation.
The integral range 4, is a good measure of the notion of scale. It is a convenient measurement of the size of
a RVE of a stationary and ergodic random structure.

3.3. Case of the Voronoi mosaic

The previous notions of mathematical morphology can be illustrated in the case of the microstructure
considered in the numerical simulations of this work, namely 3D Voronoi mosaics.

To generate such microstructures, an original method is proposed, with numerous extensions of the
classical model (Decker and Jeulin, 2000). Its main advantage, as compared to standard procedures, is to
generate textures with very large numbers of grains, at a low computational cost.

First pick points M|, M,, ... in space at random according to a Poisson process of density p points per
unit volume. Next subdivide space into cells (crystals) Cy, C,, ... by the rule: C; contains all points in space
closer to M; than to any M; (j # i). In the cell model C; is a convex polyhedron because it is the intersection
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of several half-spaces (points closer to M; than to M, form a half-space). M; will be called the center of C;.
This builds a Voronoi tessellation of space (Gilbert, 1962).
In practice M; represents the location of the original seed crystal from which C; grew. One assumes:

(1) the seeds for all crystals start growing at the same instant,
(ii) seeds grow at the same rate in all directions,
(ii1) seeds remain fixed in space without pushing apart as they grow into contact (see Fig. 2a).

Fig. 2. Voronoi mosaic model and finite element computations: (a) random distribution of 8000 grains in space; (b) image of the same
microstructure with two phases distributed randomly among the grains for a given volume fraction of phase 1, with the superimposed
finite element mesh; (c) subdivision of the microstructure into 32 subdomains for parallel computing and (d) example of computation
of the effective shear modulus with boundary conditions KUBC (von Mises equivalent strain distribution for prescribed mean strain
E12 = 01)
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Coloring every cell C of the tessellation at random generates a random Voronoi mosaic. In what follows,
the colors will in fact correspond to the physical properties of the components of a random composite. To
study two-phase materials, two colors are used.

Note that it is possible to superimpose a constraint of periodicity at the boundary of the volume in the
generation of the Voronoi mosaic (Decker and Jeulin, 2000; Forest et al., 2000). In the simulations of this
paper with periodic boundary conditions, such periodic Voronoi mosaics are used.

In the case of the Voronoi mosaic model, the covariance C(%) of the composite and covariogram K (%) of
the random cell C are related by the following equation (Jeulin, 1981):

C(h) = P(1 —P)]IEESI;JFPZ (48)
From the definition of the integral range (Eq. (45)):
1 K(h)
Ay =——— [ (C(h) — P*)dh = —=<dh 49
Finally, one obtains:
_E{r’}
A5 = E{(V) (50)

E{Z} is the mathematical expectation of property Z. The value of the integral range in the case of the
Voronoi mosaic model is deduced from the variance of the volume of the random cell C given by Gilbert
(1962):

A; = 1.179 (51)

4. Numerical tools for the homogenization

The finite element method is chosen for the computations presented in this work. This requires meshing
techniques for microstructures. They are described in Section 4.1. The question of mesh refinement is also
discussed here. Section 4.2 presents the parallel computing tools that are necessary to handle large enough
meshes.

4.1. Finite element meshing of microstructures

4.1.1. Free mesh and multi-phase elements

Two types of meshes were used and compared in the case of the Voronoi mosaic: the multi-phase element
technique and free meshing with tetrahedral elements. Fig. 3 shows them in the case of an aggregate of 20
Voronoi cells. In the multi-phase element technique, an image of the microstructure is used to attribute the
proper phase property to each integration point of a regular mesh, according to the color of the underlying
voxel. Fig. 3a shows an example of regular mesh with linear eight-node elements and eight integration
points per finite element. The main drawback of this simple technique is that in the same finite element two
different phases can be present. The element edges do not necessarily follow the interfaces of grains in the
microstructure. Such meshes have been used extensively in Lippmann et al. (1997) and Barbe et al. (2001a).
The second type is the free meshing technique with tetrahedral elements (see Fig. 3b; Thompson et al.,
1999). The faces of all Voronoi cells are meshed using two-dimensional Delaunay triangles. After that, the
individual cell volumes are meshed with tetrahedral elements with the constraint that they are built on the
2D meshes of the faces. Accordingly, all integration points of one element belong to the same phase. This
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() (b)

Fig. 3. Two meshes of the same microstructure (20 Voronoi cells) with approximatively the same number of integration points (i.p.)
and the same number of degrees of freedom (dof): (a) multi-phase elements (13,824 i.p. and 6591 dof) and (b) free meshing (10,326 i.p.
and 6387 dof).

technique usually leads to larger numbers of elements. Both methods are compared in Lippmann et al.
(1997) for inclusion-matrix microstructures. Note that Ghosh and Moorthey (1995) developed a finite
element method based on Voronoi cells.

For illustration, an example of tensile test is computed in linear elasticity (traction load is prescribed on
one face, the opposite one is fixed and all the other faces are free of forces). Phases 1 and 2 were randomly
distributed among the 20 grains of Fig. 3 according to a volume fraction of 70% of hard phase P;. The
contrast in Young’s modulus is 100 (E; = 2500 MPa, E; = 25 MPa) and the Poisson ratio is (v; = 0.3,
v, = 0.49). The obtained average stress and strain are found to be identical for both meshes. However slight
differences exist for the local fields. The local distributions of von Mises stress are compared in Fig. 4. The
local differences are also explained by the insufficient mesh density used in each case. As a result, and for the
sake of simplicity, the multi-phase element technique is used in the sequel. Quadratic bricks with reduced
integration (20 nodes and eight integration points per element) are used in all following simulations, contrary
to the simple previous test. Since only 3D simulations are presented, the number of degrees of freedom in one
brick is 60 (the number of nodes multiplied by the three components of displacement at each node). For a
large regular cubic grid made of 20-node bricks, the number of nodes is approximately equal to four times
the number of bricks. The total number of degrees of freedom is then three times the number of nodes.

4.1.2. Determination of the mesh density

The effect of the mesh density (average number of finite elements used to mesh one Voronoi cell) is
studied. Three microstructures of 1000 grains are used for three different volume fractions (72.5%, 66.7%
and 52.5% of phase P;). The material properties are the same as in the previous subsection. Tensile tests are
simulated. The number of cells and the geometry of the microstructure is unchanged but different mesh
resolutions are used. The number of finite elements was changed from 1728 to 85,184 (the corresponding
number of degrees of freedom was changed from 24,843 to 1,075,275). The results given in Fig. 5 show the
convergence of the apparent Young’s modulus as a function of the number of degrees of freedom. This
figure also shows that one must use about 50 quadratic elements to mesh one grain, for the variation of the
overall effective elastic response to be smaller than 1%. In the sequel, about 14 finite elements per grain were
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Fig. 5. Effect of mesh size and of the volume fraction of hard phase (P, = P) on the value of apparent Young’s modulus.

retained as mesh density, which corresponds to a precision better than 5% in the results. It has been checked
also that this mesh density is sufficient to get a precision better than 1% on the statistical fluctuations and
variance of the results when many realizations are considered.

4.2. Parallel computing

In order to characterize the size of the RVE, one must be able to carry out computations with a very large
amount of finite elements. For that purpose, we have chosen to resort to parallel computation.



T. Kanit et al. | International Journal of Solids and Structures 40 (2003) 3647-3679 3661

The retained method is the FETI solver (Finite Element Tearing and Interconnecting method (Fahrat
and Roux, 1994; Feyel et al., 1997; Feyel, 1998)), which is a dual subdivision method well-known for its
numerical scalability. Subdivision means the process of dividing a large finite element mesh into sub-
domains. The large algebraic system is replaced by a succession of smaller ones related to the subdomains
and to the interface between the subdomains. The numerical scalability of FETT allows us to solve problems
with a large number of subdomains. The individual problems on subdomains are computed simultaneously
on different processors. For a good speed-up, subdivision must give the same amount of work to all
processors which must have the same velocity. The aim of the interface problem is to ensure continuity of
displacement at the interface between subdomains. FETI is called dual method because the interface
problem is posed in terms of forces that glue the subdomains. This interface problem is solved iteratively by
a conjugate gradient method.

The large contrast of properties considered in this work can lead to ill-conditioned matrices. This nu-
merical difficulty is solved by using a conjugate gradient algorithm with a preconditioning procedure.
Unfortunately, the preconditioning is less efficient for an increasing number of subdomains.

A cluster of 32 PC under Linux was available for the computations of this work. The largest volume
computed in this work, in the case of linear elasticity, is a cube with 48 x 48 x 48 =110,592 quadratic bricks
for the mesh of about 8000 Voronoi cells (i.e. about 14 elements per cell). This corresponds to almost 1.4
million of degrees of freedom. This mesh and the distribution of the two phases are shown in Fig. 2b. The
mesh is decomposed into 32 subdomains (see Fig. 2c). The resolution of the linear elastic problem is done in
one single increment, using a multi-frontal solver. About 850 Mo RAM memory are necessary for each
processor, so that the whole resolution requires more than 27 Go memory. The entire computation time for
one resolution (reading of the mesh, parallel resolution, writing of the output files) is about 1 h and 30 min.
An example of result is shown in the case of a shear test with KUBC conditions in Fig. 2d.

5. Determination of morphological and effective physical properties of a two-phase Voronoi mosaic

Three types of overall properties are studied in this part for a large range of volume sizes V' and a large
number of realizations of the random microstructures. The first one is a geometrical property, namely the
overall volume fraction P*PP. The motivation for studying this simple property stems from the fact that the
integral range is known in the case of the Voronoi mosaic (see Eq. (51)). This is a good test for the random
generation procedure of the microstructure. Furthermore, this illustrates in a simple way the methodology
proposed in this work. The investigated physical properties are the elastic moduli (bulk modulus £ and
shear modulus u), and the thermal conductivity 4.

For each property, the dispersion of the results when increasing volume ¥ is reported in Section 5.1. The
integral ranges are then identified in Section 5.2. The link between these results and the notion of RVE is
postponed to Section 6.

The convention is made that the mean volume of one Voronoi cell is fixed equal to 1 and kept constant.
So, a volume ¥ contains N = V Voronoi cells. The results will be given as a function of volume V', which is
also equivalent to a number of cells N = V. As a result, an increasing volume means an increasing number
of grains.

5.1. Study of the average properties

5.1.1. Volume fraction

Consider a microstructure in which there is a given number of Voronoi cells, with a given probability
P, =P (and P, =1 — P), for the random attribution of the two phases 1 and 2. When working with do-
mains of finite size, estimations of P, or P, are obtained for each realization. So, the obtained volume
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fraction found for a given realization of the Voronoi mosaic in a finite volume ¥ will differ from P;. The
number of cells in a volume V is chosen to obey to a Poisson distribution with mean value N = V. It means
that in a microstructure with N grains, there may not be enough grains to regard it as a representative
domain from the point of view of volume fraction of phase 1.

Many realizations of 3D Voronoi mosaic were simulated for increasing volume sizes. The mean volume
fraction and its dispersion found for a given volume ¥ (or equivalently mean number of grains N) are given
in Fig. 6, as a function of V. It can be seen that the mean volume fraction does not depend on volume size.
The mean volume fraction for phase 1 found for small volumes coincides with that found for large ones,
provided that a sufficient number of realizations of small volumes are considered. However, the variance
decreases with increasing volume size. This study was carried out for the following target mean volume
fractions: P = 50%, 70%, 90%. The number of realizations considered for each volume size is given in Table
1. This number is chosen so that the obtained mean value and variance do not vary any longer up to a given
precision (less than 0.5% here).

As a result, the overall volume fraction of a phase in a heterogeneous material can be determined either
by a few number of measurements on large volumes, or by many realizations for small volumes of material.
We investigate in the two next subsections whether this reasoning can be extended to physical properties.

5.1.2. Elastic moduli
In this subsection, the Voronoi mosaic is considered as a two-phase linear elastic material. The chosen
mechanical properties of the phases are

(Ey,vi, ki, 1) = (2500 MPa, 0.3, 2083 MPa, 962 MPa) (52)

(B3, v2, ko, 11y) = (25 MPa,0.49,417 MPa, 8 MPa) (53)
So the chosen contrast in the Young’s modulus is:
¢ =Ei/E, = 100 (34)

Note that the contrast in shear modulus pu is very high, whereas the contrast in bulk modulus k& is weaker.
The same microstructures used in the previous study for the volume fraction (in the cases of P, = 70% and
P, =1— P = 30%) are simulated and are introduced in the finite element method for various boundary
conditions. The objective of this part is to estimate the apparent mechanical properties (the bulk modulus
k*PP and the shear modulus u®P?), as a function of the size of the domain V.

0.8 T
0.78¢
0.76f
0.74¢
0.72¢

0.7p ™——
0.68f
0.66
0.64¢
0.62t

Volume fraction

0.6 -
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\%

Fig. 6. Mean value and intervals of confidence for volume fraction P = 70% (results from simulations).
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Table 1

Number of realizations » used for all considered domain sizes
Size of the domain (V) n
6 2500
10 1653
15 1488
37 1238
50 1200
100 1152
125 1020
200 277
285 118
500 35
1000 25
2000 12
2500 14
4000 12
4500 15
8000 13
10000 13
12000 11
14000 10

5.1.2.1. Isotropy of mean apparent moduli. If a small volume element J of a given composite material is
considered, it will not a priori exhibit an isotropic behavior. Even if the microstructure is expected to be
macroscopically isotropic, the tensor of apparent moduli obtained for a finite domain ¥ is generally not

isotro

pic. We show here however that the mean value of a sufficient number of realizations is isotropic. For

that purpose, microstructures of volume /' with an average number of 200 Voronoi cells are considered.
The anisotropic matrix of the apparent mechanical properties relating mean stress and strain tensors
is computed for each realization. Six computations are necessary for each realization to find the 21 ap-
parent elastic coefficients, using here KUBC. The mean value of the matrix of overall mechanical pro-
perties is given below. From averaging over 10 different realizations, the obtained matrix is (components in

MPa):
2034 935 939 5 2 7
935 1997 934 1 3 1
) 939 934 2035 1 1 3
app] __
Col=|"5 1 1 smo1 1 (55)
2 3 1 1 531 1
7 1 3 1 1 542
after 30 and 60 different realizations the matrix becomes:
2001 928 928 3 2 7
928 1991 927 3 2 0
) 928 927 1995 0 2 4
app] __
e N - I (56)
2 2 2 1 525 0
7 0 4 1 0 528
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2015 935 934 2 1 3
935 2013 934 2 1 0
934 934 2012 0 1 2
app) _
[Coo’) = 2 2 0 533 1 0 (57)
1 1 1 1 532 1
3 0 2 0 1 533

The last matrix shows the structure of an isotropic elasticity matrix with bulk and shear moduli equal to:
k*PP = 1289 MPa and u = 533 MPa.

To estimate these effective values, it is not necessary to compute the whole matrix (six tests on each
volume). Instead, for the boundary conditions KUBC for instance, the two deformations £ and £, defined
by Eq. (19) can be imposed successively to each realization with volume V. For each realization, two values
k*P and p*P are obtained (see Egs. (20) and (21)). The mean values (k*P, iP?) over all realizations provide
the wanted estimation (associated with the given volume V) of the isotropic effective linear properties. This
is the procedure adopted in what follows.

5.1.2.2. Estimation of the apparent elastic moduli. The numerical simulations based on the finite element
method are carried out for three different boundary conditions: KUBC, SUBC and the periodic boundary
conditions (PERIODIC). The studied volume fraction of hard phase is P = 70%. The number of realiza-
tions for each volume is given in Table 1. Fig. 7 gives the obtained mean values and variances of the
apparent moduli £°P? and p?PP as a function of the volume size (or equivalently the number of Voronoi
cells). It shows that the dispersion of the results decreases when the size of the domain increases for all
boundary conditions. As opposite to the case of volume fraction previously studied, the obtained mean
values depend on the volume size, but also on the type of boundary conditions. For each modulus, the three
values converge towards the same limit for large volumes ¥, which is the wanted effective modulus.
The values kT and pT found for large volume sizes are reported in Table 2 and compared to the Voigt,
Reuss and Hashin—Shtrikman bounds. The SC model, also given in Table 2, provides a fair estimate in most
cases, except for the volume fraction P = 50%, where it underestimates the moduli. This is due to the fact
that the SC model does not properly reproduce the percolation threshold of the mosaic model (which is
close to 50%).

It can be noticed that the mean value given by the periodic boundary conditions varies slightly as a
function of the size of the domain, as compared to the other boundary conditions. Fig. 7 gives the cor-
responding confidence intervals [Z — 2D, Z + 2D;|, where Z is one of the apparent moduli, Z its mean value
and D? its variance. Finally, an important bias is found in the mean value given by all boundary conditions
for small volume sizes, the value being different from the effective one obtained for large specimens. For
small volumes, the average moduli obtained by simulations depend on the boundary conditions: KUBC
produces results close to the upper Voigt bound, while SUBC gives results close to the lower Reuss bound.
This bias is well-known (Huet, 1990; Sab, 1992; Ostoja-Starzewski, 1998). It must be taken into account for
the definition of the RVE. The result is that the mean value computed on small specimens cannot represent
the effective response for the composite material even using the periodic boundary conditions and a suf-
ficient number of realizations. It appears also that for sufficiently large sizes (here around ¥ = 15), the mean
value obtained with the periodic boundary conditions practically does not depend on the size of simula-
tions.

5.1.3. Thermal conductivity

Different thermal conductivities are now attributed to the phases of the Voronoi mosaic in order to
predict the effective one. The same microstructures used in the study of the RVE for the volume fraction
and elasticity (P = 70%), are simulated to determine the apparent thermal properties. The aim of this part is
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Fig. 7. Mean values and intervals of confidence on the mean value for the bulk modulus £**" (a) and shear modulus p**? (b), as a
function of domain size (P; = 70%). Three different types of boundary conditions are considered. For clarity, the errorbars are slightly
shifted around each studied domain size.

to estimate the apparent thermal conductivity A*"? of the considered material, as a function of the size of the
domain. The chosen thermal conductivities of the phases are

(J1,72) = (2.44 W/mK,0.0244 W/mK) (58)

generating a contrast ¢ = 4;/4, = 100.

The numerical results are obtained for three boundary conditions: uniform temperature gradient at the
boundary (UGT), uniform heat flux at the boundary (UHF) and periodic boundary conditions (PERI-
ODIC). Fig. 8 gives the mean apparent conductivities and associated variances as a function of the domain
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Table 2
Values of numerical results, bounds of Voigt-Reuss or Wiener (upper and lower bounds), Hashin—Shtrikman’s bounds (HS+, HS-)
and SC estimate for elastic and thermal properties studied in this work

Property Simulation Upper bound Lower bound HS+ HS- SC
u (P =170%, E\/E, = 100) 433 676 27 534 39 435
w (P =170%, E,/E, = 1000) 398 673 3 529 6 404
u (P =50%, E,/E, = 100) 193 485 17 338 28 147
k (P ="70%, E\/E> = 100) 1198 1583 947 1318 955 1194
k (P ="70%, E\/E, = 1000) 743 1471 133 1019 135 737
k (P = 50%, E\/E, = 100) 833 1250 694 976 699 770
A (P ="10%, A/l = 100) 1.346 1.715 0.079 1.498 0.180 1.363

The elastic moduli are given in (MPa), the thermal conductivity in (W/mK).
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Fig. 8. Dispersion and mean value of the apparent effective thermal conductivity as a function of domain size for different boundary
conditions (¢ = 4; /4, = 100, P = 70%).

size. It shows that the dispersion of results decreases when the size of the volume increases. The mean value
given by the periodic boundary conditions does not vary very much, as compared to the other boundary
conditions. The three mean values converge towards the effective thermal conductivity 2" = 1.346 W/mK,
which is compared to Wiener’s and Hashin—Shtrikman’s bounds in Table 2. It can be noticed also that the
SC model gives a very good estimate (see Table 2). For small volume elements, the average thermal con-
ductivity obtained by simulations depends on the boundary conditions: UGT gives results close to the
upper Wiener bound Awienerr, and UHF produces results close to the lower Wiener bound Awiener—:

;Ll)uz

;bWicncr+ = P1/11 + Pziz, /IWicncrf = m

(59)

The SC model gives the overall thermal conductivity A" as the solution of the equation (Beran, 1968):

)b] _ )Leff )L,Z _ ;Leff
p er i1 w2 =
A —+ 21 V%) —+ 21

(60)

We have to notice that, as for the apparent elastic moduli, volumes larger than 15 enable us to get an
unbiased estimation of 2" using PERIODIC boundary conditions.
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5.2. Fluctuation of apparent properties and determination of the integral ranges

5.2.1. Volume fraction
In this section, we come back to the variance of the volume fraction for the Voronoi mosaic, which is
given by Eq. (47). In the three-dimensional case, it becomes:
D}% V) = M (61)
14
where P is the true volume fraction, 45 is the integral range in 3D for the Voronoi mosaic, and V is the
volume of the field containing N cells in average. With the convention that the average volume of one cell is
one, the conditions N = ¥ can be substituted in Eq. (61). Fig. 9 is then used to identify 45 from the simu-
lations presented in Section 5.1.1. Table 3 gives the integral range 45 estimated from Fig. 9. It is close to the
result given by the semi-analytical calculations deduced from (Gilbert, 1962, Eq. (51)), with a larger ex-
perimental error for the case P = 70%.
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Fig. 9. Fitting of D3(V)/P(1 — P) as a function of the inverse of the volume of the field for volume fraction P = 70%. The slope
provides the value of the integral range 4; for the volume fraction.

Table 3
Values of the integral range 4; and of the coefficient « for different properties and different boundary conditions, identified from the
simulation results

Property Integral range 45 Coeflicient o
P =50% 1.178 £0.023 1

P =170% 1.111+£0.014 1

P =90% 1.177 £0.070 1

k (P ="10%, E,/E, = 100) KUBC 2.088 £0.045 1.029 £0.051
k (P ="10%, E,/E, = 100) SUBC 1.267+0.023 0.915+£0.044
k (P ="10%, E,/E, = 100) PERIODIC 1.020£0.011 0.780+£0.037
u (P =170%, E,/E, = 100) KUBC 1.863 +0.046 0.992 +0.049
w (P =170%, E\/E; = 100) SUBC 0.820+0.026 0.735+£0.066
u (P =170%, E,/E, = 100) PERIODIC 1.322+0.009 0.763 £0.021
k (P ="170%, E|/E, = 1000) PERIODIC 1.650£0.017 0.900 £0.038
u (P =170%, E,/E; = 1000) PERIODIC 2.097+£0.015 0.862 +0.023
k (P = 50%, E|/E, = 100) PERIODIC 1.589 £ 0.050 0.875+£0.010
u (P =50%, E,/E, = 100) PERIODIC 1.637+0.016 1.009 £0.036
A (P ="10%, 21/2, = 100) UGT 2.335+£0.258 1.070 £0.021
A (P ="170%, A1/ = 100) UHF 2.036 +£0.407 0.978 £0.031

A (P ="10%, 4/, = 100) PERIODIC 2.619+0.200 1.033+0.018
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5.2.2. Elastic moduli

As recalled in Section 3.2, the effective properties are defined from spatial averages of fields Z(x) over a
volume V. We will have to consider now fluctuations of the average values over different realizations of the
random composite material inside the volume V. In geostatistics, it is well known that for an ergodic
stationary random function Z(x), one can compute the variance D%(V) of its average value Z(V) over the
volume ¥ (Matheron, 1971; Lantuéjoul, 1991):

Dy(V) = 3 (62)
where D2 is the point variance of Z(x) and 45 is the integral range of the random function Z(x). This is a
generalization to any random function Z(x) of the notion introduced for the volume fraction in Section 3.2.

The scaling law (62) is valid for an additive combination of the variable Z over the region of interest V,
when its size is such that V' > 4; and when 4; is finite. For an infinite integral range, /" can be replaced in
many cases by V* (with o # 1) in relation (62) (Lantuéjoul, 1991).

As the composition of elastic moduli in the change of scale is not additive in general, relation (62) cannot
be applied. Instead we propose to test a power law (called “model” in what follows) according to the
relation:

DL(V) Dg(*;j)“ (63)

A similar relation was proposed and tested by Cailletaud et al. (1994). In the case of a two-phase material
with elastic property Z; for phase 1 and Z, for phase 2, the point variance D% of the random variable Z is
given by:

D2 =P(1 — P)(Z, — Z,) (64)

The relation (63) becomes:

A o
D) =P(1 - P2 - 2 () (65)
For the elastic properties (52) and (53) chosen in this work, Eq. (64) yields: D} = 583,329 (MPa)* and
D’ = 190,784 (MPa)*. Eq. (63) can be written as:

log(D3(V)) = —alog(V) + (log(D}) + «log(4s)) (66)

Our data were fit to relation (66) for the elastic moduli £*P? and p*PP and different boundary conditions. The
found parameters A3 and o are given in Table 3. The quality of the model can be seen in Fig. 10, where
the variances of simulated results and the model are compared for all considered boundary conditions. The
power law is especially well-suited for PERIODIC boundary conditions.

It is clear, from the coefficients given in Table 3, that the proposed scaling law in relation (63) can be
accepted for our simulations. The value of the integral range depends on the boundary conditions. It is of
the order of the integral range of the volume fraction for periodic and SUBC conditions. The largest in-
tegral range of the elastic moduli is found for the periodic boundary conditions and the coefficient « is close
to (but generally smaller than) 1. It means that the variance decreases more slowly with the volume than the
variance of the volume fraction in all cases. Note that the value of the coefficient o found by Cailletaud et al.
(1994) is also close to 1 for a 2D random mosaic. Another conclusion is that larger domains (or more
realizations) must be used to estimate the elastic moduli with a given precision, for SUBC than for KUBC
boundary conditions. This will be illustrated later.
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5.3. Effect of the volume fraction and contrast on the integral ranges
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Variances of the apparent elastic moduli £*P? and p*P? for different boundary conditions: simulations and model.

The apparent properties and integral ranges obtained for elasticity depend on the volume fraction
of phases. A second volume fraction P, = P, = P = 50% is investigated here in addition to the previous
one P, = 70%. These microstructures are also simulated and introduced in the finite element software
with the same mechanical properties, given by (52) and (53). The objective is to study the effect of the



3670 T. Kanit et al. | International Journal of Solids and Structures 40 (2003) 3647-3679

volume fraction on the integral ranges of the apparent bulk and shear moduli £*P? and u*P?. The numerical
simulations using the finite element method were performed in this case only for the periodic boundary
conditions. The mean values and variances are given in Fig. 11 as a function of the domain size. The mean
value varies slowly as a function of the size of the domain. Again, an important bias in the mean value for
small sizes of specimens is observed. For domain sizes larger than ¥ = 37, the mean values are almost
constant, and coincide with the effective properties. This size is larger than for P = 70% (where V ~ 15
according to Fig. 7). The values of the integral ranges and of the coefficient o, obtained by identification of
the power law model (Eq. (63)) from the numerical results, are given in Table 3. It can be noticed that the
values of the integral ranges and those of the coefficient « obtained in the case of P = 50% are larger than
those obtained in the case of P = 70%, for a given contrast of properties. The coefficients & remains close to
1 for all investigated volume fractions.

Another important source of fluctuations of apparent moduli of finite domains is the contrast of
properties ¢ = E| /E,. So far, only the case ¢ = 100 has been investigated. Let us now consider a contrast
¢ = 1000 (£, keeping its value 2500 MPa), for P = 70%. The objective is to study the effect of the contrast
on the integral ranges of the effective elastic properties. The numerical simulations are performed for pe-
riodic boundary conditions. Results are shown in Fig. 12. A bias in the mean value in this case is observed
when V' < 15 grains (as in the case of a contrast ¢ = 100). The values of the integral ranges and of the
coefficient o, obtained by fitting the numerical results, using the model (Eq. (63)), are given in Table 3. The
values of the integral ranges obtained in the case of (¢ = 1000, P = 70%) are much larger than those ob-
tained in the case of (¢ = 100, P = 70%). The values of the coefficient « remain close to 1.

5.3.1. Thermal conductivity
The power law model proposed in the case of elastic properties (Eq. (63)) can be used also for apparent
thermal properties. The point variance D? is:

D? = P(1 — P)(2 — Jy)* = 1.2253 (W/mK)? (67)

The values of the integral ranges and of the coefficient « identified from the simulations are given in Table 3
for different boundary conditions. They are found to depend on the type of boundary conditions. The
largest integral range for the thermal conductivity is obtained for the periodic boundary conditions and the
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Fig. 11. Dispersion and mean value of the apparent elastic properties as a function of the domain size for periodic boundary conditions
in the case of (¢ = 100, P = 50%): (a) evolution of k and (b) evolution of u.
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Fig. 12. Dispersion and mean value of the apparent elastic properties as a function of the domain size for periodic boundary conditions
in the case (¢ = 1000, P = 70%): (a) evolution of £**" and (b) evolution of p*PP.
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Fig. 13. Variances of apparent thermal conductivity A*"" for different boundary conditions P = 70%.

coefficient o is close to 1. These parameters are larger than for the case of elasticity. Fig. 13 shows the
quality of the model. The power law is especially well-suited for periodic boundary conditions.
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6. Determination of the size of the RVE

When considering a material as a realization of a random set or of a random function, we will show that
the idea that there exists one single possible minimal RVE size must be abandoned. Instead, the size of a
RVE can be defined for a given physical property, a given contrast and, above all, a given precision in the
estimation of the effective properties and given number of realizations that one is ready to generate. This is
explicited later for the three situations encountered in the previous sections.

The size of a RVE for an estimated property Z can be related directly to the precision of the mean value
of the results of different realizations for each domain size. So, theoretically, if the domain V is a RVE for
the property Z, the dispersion must vanish. In practice one must determine the size of the RVE for a given
error ¢. In the theory of samples, the absolute error on the mean value obtained with n independent
realizations of volume V¥ is deduced from the interval of confidence by:

2D,(V)

Eabs — 7 (68)

Hence the relative error g, iS:

Eabs ZDZ(V)
Erela = = 69
rela 7 Z\/ﬁ ( )
The size of the RVE can now be defined as the volume for which for instance n = 1 realization is necessary
to estimate the mean property Z with a relative error &, = 1%, provided we know the function D, (V).
Alternatively, we can decide to operate on smaller volumes (provided no bias is introduced), and consider
realizations to obtain the same relative error. Eq. (69) gives:

_AD3(V)
"= e

“rela

(70)

6.1. Volume fraction

In the case of the volume fraction, the exact mean value P = P is known. The relative error is given as a
function of the sampled volume 7 by:
2Dp(V)

(1-P)4s
8rela(V) - P =2 VP
which corresponds to the application of Eq. (68) for n = 1. This is illustrated in Fig. 14 in the case of a
volume fraction P = 70%. Using Eq. (71), the minimum domain size that is necessary to reach a given
precision are shown, for three different volume fractions, in Table 4.

The size of a RVE for the estimated volume fraction can be related directly to the precision of the mean
value of the results of different realizations for each domain size. Fig. 14 shows three examples of this
measurement: one obtains Vi F =800, VRYE =15050 and VRYE =20,000 for the relative precision
Erela = %0, &rela = 2% and &gy, = 1% of the mean value of the volume fraction, respectively. The size of the
RVE can also be defined as the volume for which for instance n = 10 realizations are necessary to estimate
the mean property with a confidence &, = 1%. Eq. (71) gives:

4(1 — P)ds

2
nPSrela

(71)

V= (72)

For P = 70% one finds VR®YE = 2000. Conversely, the same equation also shows that one must use about
n = 1350 realizations to find the mean value with an error &., = 1% for a fixed V'RVE = 15.
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Fig. 14. Relative precision &, for volume fraction P = 70% and n = 1 realization: It decreases when the size of the domain increases.

Table 4
RVE size for a given relative precision &, and n = 1 realization of the estimated volume fraction, for three different volume fractions
Volume fraction P 1% 2% 5% 10%
50% 47,000 11,790 1880 470
70% 20,000 5050 800 200
90% 5240 1300 210 52

6.2. Elastic moduli

In the case of effective elastic moduli, the exact mean value and variance for a given domain size are a
priori unknown. Using Eq. (63), the absolute error on the mean value can be evaluated as:

2D,(V) = 2D, </;/3> (73)

where Z stands here for kPP or u*PP. The absolute error can be deduced from Fig. 10 that shows the power
law model and the variances of simulations as a function of domain size, for different boundary conditions.

The first important remark is that for the same absolute error, the periodic boundary conditions require
the largest domain size, compared to KUBC and SUBC for £ and u. This is due to higher fluctuations of
apparent properties obtained with these conditions. The KUBC require a smaller domain size than the
SUBC for the same absolute error.

Using Eq. (68) in the case of the elastic moduli £*PP and PP, the absolute error for the mean value is
obtained with a sample of n realizations, Z standing for £*? or p*"P. Hence the number of realizations n
necessary for the estimation of the property with a given absolute error &,,; and a volume V is:

4 A3\

) =037 (74)
abs V

One must insist on the fact that the absolute error corresponds to the estimation of the mean appa-

rent moduli which have been found to depend in general on the domain size and do not necessarily coincide

with the wanted effective property, especially for small domain sizes. This corresponds to a bias of the
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estimation. This bias is bounded by the difference of the estimations obtained using KUBC and SUBC,
since these boundary conditions can be shown to provide bounds of the the effective properties (Huet, 1990;
Hazanov and Huet, 1994). From the available results of Fig. 7, the smallest domain size for which the bias
can be neglected is ¥ = 15 grains for k*PP and p*P? in the case of periodic boundary conditions. For the
conditions KUBC and SUBC, volumes larger than 1000 are necessary to obtained unbiased mean values,
i.e. mean apparent moduli that almost coincide with the wanted effective ones.

Using Eq. (69), and for a volume V" providing unbiased moduli, we deduce the relative precision of the
effective property Z°T (namely the effective bulk modulus &7 or the effective shear modulus u¢). Hence, the
number #n of realizations that must be considered is deduced from Egs. (70) and (73). This is illustrated in
Fig. 15 for &., = 1%. For a given precision, the number of realizations decreases when the domain size
increases. The periodic boundary conditions require the largest number of realizations, compared with
other boundary conditions. Let us give two explicit examples of the use of Eq. (70) for two unbiased
volumes and periodic boundary conditions: ¥ = 50 and ¥ = 125. The minimal numbers # of realizations to
obtain the overall bulk modulus £*" and shear modulus p°", for a given precision &, are given in Table 5.

Conversely, the minimum size of the RVE can be determined for a given ¢, and a given number n = 10
of realizations. The results are shown on Fig. 15. When ¢, = 1%, it can be seen that one must take about
VRVE — 13,340 (from the result given by the periodic boundary conditions) for £*** and VRVE = 71,253 for
1*PP. Using such sizes in a finite element code is rather prohibitive. One would prefer smaller volumes. This
requires however a sufficient number of realizations. By comparison between these results and those for
volume fraction in Table 4, it turns out that larger volumes are required to estimate the elastic moduli than
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Fig. 15. Number of realizations as a function of the domain size for a given relative error &, = 1%: (a) case of £**? and (b) case of p*PP.

Table 5
Minimal number of realizations necessary to estimate the effective elastic moduli and thermal conductivity with given relative precision,
for given volumes ¥ = 50, 125 (for periodic boundary conditions, P = 70%, ¢ = 100)

Relative precision Erela = 1% Erela = 2% Erela = 5% Erela = 10%
Bulk modulus (¥ = 50) 700 175 28 7

Shear modulus (V' = 50) 2500 625 100 25

Bulk modulus (¥ = 125) 400 100 16 4

Shear modulus (V = 125) 1300 325 52 13
Thermal conductivity (¥ = 50) 1950 490 80 20

Thermal conductivity (V' = 125) 765 190 30 8
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Fig. 16. Number of realizations as a function of the domain size, necessary to obtain an absolute precision ¢,,; = 0.05 W/mK on the
mean value of apparent thermal conductivity P = 70%.

to measure the volume fraction with the same precision (over three times more). In the present study, the
shear modulus requires a larger number of realizations than the bulk modulus, for a given precision.

6.3. Thermal conductivity

Similarly to the case of elastic properties, the absolute error on the mean value of apparent conductivity
is given by relation (73). For the same absolute error on the mean value, the periodic boundary conditions
require the largest domain size compared to the other boundary conditions. The UGT conditions give a
smaller domain size than the uniform heat flux for the same absolute error. The number of realizations n for
a given relative error ., on the effective conductivity A" is deduced from Eq. (69). It is illustrated in Fig. 16
for &, = 1%. For a given precision, the required number of realizations decreases when the volume in-
creases. The periodic boundary conditions (PERIODIC) require the largest number of realizations, as
compared to other boundary conditions. The size of the RVE, considered for instance as the volume re-
quiring only n = 10 realizations, for ¢, = 1% is about ¥ = 5504 (periodic boundary conditions).

One must again insist on the fact that the mean value of the apparent conductivity depends on the
domain size. Volumes larger than /' = 100 are necessary to obtain a mean apparent conductivity which is
not too far from the effective one ", for the conditions UGT and UHF. The smallest domain size giving
an unbiased mean value of apparent conductivity is about 10 for PERIODIC conditions. Using Eq. (70) in
the case of the effective thermal conductivity, the minimal numbers 7 of realizations to evaluate the effective
thermal conductivity with a given precision &.y,, are given in Table 5 for the fixed sizes V; = 50 grains and
V3 = 125 grains.

7. Conclusions

The effective linear properties of random composites can be determined not only by numerical simula-
tions on large volume elements of heterogeneous material, but also as mean values of apparent properties of
rather small volumes, providing that a sufficient number of realizations is considered. This is very im-
portant, since computations on large volumes are usually prohibitive. This corresponds also to an enlarged
definition of RVE. Its size ¥®VE must be considered as a function of five parameters: the physical property
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Z, the contrast of properties ¢, the volume fractions of components, the wanted relative precision &y, for
the estimation of the effective property and the number n of realizations of the microstructure associated
with computations that one is ready to carry out. It depends also in fine on the special morphology of
distribution of phases. Conversely, one can also choose a volume VRVE allowing as many numerical simu-
lations as necessary. The proposed methodology gives then the number of realizations that are necessary to
reach a given precision &, (see for instance Eq. (74)).

However, the chosen volume VRVE cannot be taken as small as one may wish, because there exists in
general a bias in the estimation of the effective properties. This bias is due to the type of boundary con-
ditions. The mean apparent properties computed on finite size domains do not coincide with the effective
ones if the domain size is too small. In the case of linear elasticity for instance, KUBC overestimate the
effective properties, whereas SUBC underestimate them. For both thermal conductivity and elasticity, the
bias introduced by the periodic boundary conditions is found to be much smaller than for the other
boundary conditions. In the case of Voronoi mosaics considered in this work, for domain sizes larger than
V =15 (respectively V = 37) for volume fraction P, = 70% (respectively P, = 50%), the mean apparent
property do not differ significantly from the effective one. However the dispersion of apparent properties
obtained by periodicity conditions is always found to be larger than for the other types of boundary
conditions. This means that more realizations are necessary (about 1700 for elasticity with V' =15,
&rela = 5%, Py = 70%, ¢ = 100).

For the determination of RVE sizes of a given microstructure, the proposed methodology can be
summarized as follows:

e generate different realizations of the microstructure for 4-5 different volume sizes V;

e submit each microstructure to loading with for instance periodic boundary conditions and record the
obtained apparent properties;

e compute mean value and variance of apparent property for the considered volume sizes; check that the
number of realizations was sufficient for each volume (apply the sampling rule (68));

¢ identify the integral range 43 and power o in model (73);

e set the wanted precision for the estimation of effective property ¢, and a number of realizations n; use
the model to deduce the final size VRVE,

The notion of integral range plays the central role in the method. For additive properties (like volume
fraction or mass density), it is simply related to the variance and domain size and does not depend on the
effective property itself but only on the morphology. For more complex physical properties like elasticity
and thermal conductivity, a power law model was proposed and identified. The generalized integral range
A5 is found to depend on the volume fraction, the contrast in properties, and the type of boundary con-
ditions. The model seems to fit better to the data in the case of periodic boundary conditions. This can be
related to the fact that the observed bias in the estimation of effective properties is less pronounced in the
case of periodic boundary conditions.

The case of 3D Voronoi mosaics was studied in details, as an example of random microstructures. This
model is relevant for polycrystals but also for two-phase materials in which both phases percolate. The
fluctuations of apparent moduli on small domains can be attributed to the percolation level of the hard
phase for the considered realization. This could explain the larger values found for the integral range 4;
found for the volume fraction P, = 50% than for P, = 70%. This is synonymous of a larger dispersion of
apparent moduli and finally to larger RVE sizes. Similarly, the increase in the contrast of properties leads to
an increase of the integral range and of the RVE size. The RVE sizes found for different properties can be
compared: the minimal domain size for a relative precision of 1% in the estimated property, n = 10 reali-
zations and for P, = 70%, ¢ = 100 are ¥V = 2000, 5504, 13,340, 71,253 for effective volume fraction, thermal
conductivity, bulk modulus and shear modulus, respectively, in increasing order of volume size. These
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Fig. 17. Effective thermal conductivity of Voronoi mosaics as function of the contrast of properties ¢ (the thermal conductivity
A1 = 2.44 W/mK is kept constant, P, = 70%): comparison with the SC estimate. The numerical estimation of the effective conductivity
is obtained by finite element simulations with periodic boundary conditions on a volume ¥ = 125 and n = 1020 realizations for each
value of ¢. The mean value is plotted.

results depend on the specific values chosen for the material parameters of the components in the simu-
lation, and do not have a general value. Note that the SC estimate is often advocated to be a good model
for polycrystalline microstructures. Indeed, a rather good agreement between the found effective properties
of two-phase Voronoi mosaics and the SC model can be seen in Table 2. This is however not the exact
solution (for elasticity nor thermal conductivity) and the difference between numerical simulations and the
SC estimate is found to increase with the contrast of properties, as can be seen in Fig. 17 for thermal
properties. Another example of bicontinuous microstructure that is not described properly by the SC
scheme can be found in Roberts and Garboczi (1999), where computational homogenization methods are
also used.

The procedure must now be applied to other microstructures and random models. It can also be applied
to real three-dimensional images of heterogeneous materials obtained by tomography or confocal mi-
croscopy for instance (Forest et al., 2002). Good agreement has been obtained between experimental results
and the numerical estimation of the effective elastic and thermal properties of a two-phase material from
food industry (Kanit et al., in preparation). In particular, it is shown in this forthcoming paper that the
methodology can be used to assess the representativity of available 3D images. In such cases, it may be
necessary to estimate the properties using images smaller than the size of the deterministic RVE. On the
other hand, the advantage of the method is that it is applicable also to nonlinear constitutive behaviours of
the components (viscoplasticity, elastoplasticity). An increased dependence of the integral range on the
contrast of properties may be expected in the nonlinear case, as a result of a higher heterogeneity of the
fields.
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